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Abstract We have studied two types of meshwork models by using the canonical Monte
Carlo simulation technique. The first meshwork model has elastic junctions, which are com-
posed of vertices, bonds, and triangles, while the second model has rigid junctions, which
are hexagonal (or pentagonal) rigid plates. Two-dimensional elasticity is assumed only at the
elastic junctions in the first model, and no two-dimensional bending elasticity is assumed
in the second model. Both of the meshworks are of spherical topology. We find that both
models undergo a first-order collapsing transition between the smooth spherical phase and
the collapsed phase. The Hausdorff dimension of the smooth phase is H � 2 in both models
as expected. It is also found that H � 2 in the collapsed phase of the second model, and that
H is relatively larger than 2 in the collapsed phase of the first model, but it remains in the
physical bound, i.e., H < 3. Moreover, the first model undergoes a discontinuous surface
fluctuations transition at the same transition point as that of the collapsing transition, while
the second model undergoes a continuous transition of surface fluctuation. This indicates
that the phase structure of the meshwork model is weakly dependent on the elasticity at the
junctions.

Keywords Meshwork model · Collapsing transition · Surface fluctuations · First-order
transition

1 Introduction

Two-dimensional curvature model of Helfrich and Polakov as well as that of Nambu and
Goto has been extensively studied as a model of membranes and of strings from the view-
points of two-dimensional differential geometry and statistical mechanics [1–5]. Because of
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their two-dimensional nature, these models have a variety of surface shapes and the corre-
sponding shape transformations or phase transitions, which can be considered to represent
the complexity of real physical membranes [6–8].

Among the interesting topics on those models, the surface crumpling phenomenon is
an old topic that has long been studied from several perspectives [9–11]. The phase transi-
tion of such crumpling phenomena is itself an interesting topic in biological and artificial
membranes. Experimental investigations show that such phenomena can be seen in an artifi-
cial membrane [12]. In the string model context the path integration of the model describes
the sum over surfaces in R3 [13, 14], and therefore it seems that the summation technol-
ogy changes depending on whether the surfaces are smooth or crumpled. The crumpling
phenomena can also be seen in thin sheets. The universal structure was found in the for-
mations of singularity in ridges and cones on those crumpled sheets [15, 16]. Moreover,
if the transition is of second-order, the phenomena can be linked to a universal model for
two-dimensional systems [17].

Thus, extensive numerical studies on the phase transition have been made on triangulated
surfaces [18–22], including self-avoiding ones [23–25]. Recent numerical studies show that
the conventional surface model has a first-order surface fluctuation transition on triangulated
fixed-connectivity spheres [26–28], and moreover, that the surface collapsing phenomena
occur at the same transition point; the collapsing transition is considered to be a first-order
transition.

On the other hand, the conventional homogeneous surface model mentioned above can
be extended to an inhomogeneous one by including a cytoskeletal structure [29–32]. In fact,
the phase structure of skeleton models is partly understood [31, 32]. The numerical results
show that the phase structure of the surface fluctuation phenomenon in the fixed-connectivity
conventional surface model remains almost unchanged even when the compartmentalized
structure was introduced [31]. On the contrary, in a dynamically triangulated fluid surface
model the phase structure considerably changes if the free diffusion of vertices is confined
inside the compartments, which are introduced as an inhomogeneous structure [32].

The compartmentalized models are those defined on a triangulated lattice with a cy-
toskeletal structure, which is a sublattice. Thus, the compartmentalized model is defined by
using the lattice (= the surface) and the sublattice (= the cytoskeleton), because the one-
dimensional bending energy is defined on the sublattice and the Gaussian bond potential is
defined all over the lattice including the sublattice.

Therefore, it is natural to ask whether the surface shape is maintained only by the cy-
toskeletal structure. The problem which we consider is whether it is possible to eliminate the
surface from the compartmentalized surface or not. If this is possible, then we are interested
in whether the resulting model is well defined or not in the sense that the two-dimensional
surface structure remains unchanged. Moreover, it is also interesting to see whether the
phase structure remains unchanged when the surface is eliminated.

Following to these considerations, we studied a meshwork model in [33] and reported
some preliminary results on the phase structure. In this paper, we study two types of mesh-
work models including the one in [33] on relatively large sized surfaces. The first model in
this paper is characterized by elastic junctions and is identical to the model in [33], while
the second model is characterized by rigid junctions, which are hexagonal (or pentagonal)
rigid plates.

We will see a first-order transition of surface-collapsing phenomena in both models. With
respect to surface-fluctuations, the first model undergoes a first-order transition, while the
second model a second-order transition. Thus, our results show that the phase structure
of meshwork model is weakly dependent on the elasticity at the junctions. The Hausdorff
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dimension H of the surface can be defined by using the mean square size X2 and the total
number of vertices N such that X2 ∼ N2/H . It will also be shown that H � 2 in the smooth
phase, and that H remains in the physical bound, i.e., H < 3, even in the collapsed phase in
both models.

Thus, the first model in this paper has almost the same phase structure as that of the fixed-
connectivity conventional surface model [27]. On the contrary, the phase structure of the
second model is slightly different from the fixed-connectivity conventional model because
of the continuous transition of surface fluctuations.

2 Models

The meshwork, as mentioned in the introduction, is constructed as compartments on the
triangulated spherical surfaces by eliminating vertices, bonds, and triangles inside the com-
partments. Thus, the triangulated surfaces for constructing the meshwork are identical to
the lattices for the surface models in [31, 32]. Therefore, the size of meshwork can be char-
acterized by the expression similar to the one for those compartmentalized surface models
in [31, 32].

Let N be the total number of vertices, NS the total number of vertices on the chains,
and NJ the total number of junctions. Thus, the meshwork size can be denoted by
(N,NS,NJ ,L), where L is the total number of bonds in a chain between the junctions;
L − 1 is the total number of vertices on the chain.

Figure 1a is a meshwork of size (N,NS,NJ ,L) = (2562,1440,162,4) of the first model
(denoted by model 1), where N includes the vertices in the junctions, and NJ includes
12 pentagonal junctions. The small dots on the chains denote the vertices. The surface of
the sphere is shown in the snapshot in order to clarify the meshwork. Figure 1b shows a
meshwork of size (N,NS,NJ ,L) = (1602,1440,162,4) for the second model (denoted by
model 2), where N is the total number of vertices, NS , NJ , and L are identical to those

Fig. 1 (a) A meshwork with elastic junctions of size (N,NS,NJ ,L) = (2562,1440,162,4), where N is
the total number of vertices, NS is the total number of vertices on the chains, NJ is the total number of
junctions, and L is the length of chains between junctions, and (b) a meshwork with rigid junctions of size
(N,NS,NJ ,L) = (1602,1440,162,4), where N = NS + NJ . The surfaces are drawn in order to visualize
the meshwork clearly
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Fig. 2 (a) A hexagonal elastic junction of model 1, and (b) a hexagonal rigid junction of model 2. The unit
normal vector ni in (a) is defined on the triangle i in the hexagon, and the angle θ(ij) in S2 is defined not
only on the vertices of the chains but also on the corners of the junctions in (a) and (b)

of model 1. The junctions are counted as vertices in N and hence, N is given also by N =
NS + NJ in model 2.

The meshwork is constructed as follows: every edge of the icosahedron can be divided
into � pieces of uniform length, and then we have a triangulated surface of size N0 =
10�2 + 2 (= the total number of vertices on the surface). The compartmentalized structures
are obtained by dividing � further into m pieces (m = 1,2, . . .). Thus, we have the chains
of uniform length L = (�/m) − 2 when m divides �. The reason for the subtraction −2 is
because of the junctions at the two end points of the chain. On the meshworks in Figs. 1a,
b, � and L are given by � = 24 and L = 4, and therefore m = 4.

By using two integers � and m, we have NJ = 10m2 + 2 and NS = 30m(� − 3m) in
both models, and therefore N = 30m� − 20m2 + 2 in model 1 and N = 30m� − 80m2 + 2
in model 2. Since the junctions are considered as vertices of the sublattice, we have the
expression of NJ = 10m2 + 2. The total number of bonds in the sublattice is 3NJ − 6,
and each bond contains L − 1 vertices, then we have NS = (3NJ − 6)(L − 1). By using
L = (�/m) − 2, we have the above expression of NS . NJ junctions in model 1 contain
7NJ − 12 vertices and therefore, we have N = NS + 7NJ − 12 in model 1, whereas NJ

junctions in model 2 contain NJ vertices and therefore, we have N = NS + NJ in model 2.
The total number of the compartments depends on the size N , and in fact, it increases

with increasing N . However, the chain length L can be chosen to be constant and indepen-
dent of N . We fix the chain length L to

L = 4, (1)

which corresponds to n = 10, which is the total number of vertices inside a compartment of
the surface model in [32].

Figure 2a shows a hexagonal elastic junction of model 1. The unit normal vector ni is
defined on the triangle i at the junctions of model 1, and the angle θ(ij) is defined not only on
the vertices of the chains but also on the corners of the junctions in both models. Figure 2b
shows a rigid junction of model 2.

The Hamiltonian S(X) of model 1 is given by the linear combination of the Gaussian
bond potential S1, the one-dimensional bending energy S2, and the two-dimensional bending
energy SJ . S1 is defined not only on the chains but also on the junctions, S2 is defined only
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on the chains, and SJ is defined only at the junctions:

S(X) = S1 + bS2 + bJ SJ , S1 =
∑

(ij)

(Xi − Xj)
2,

S2 =
∑

(ij)

[1 − cos θ(ij)], SJ =
∑

〈ij 〉
(1 − ni · nj ) (model 1), (2)

where Xi(∈ R3) denotes the three-dimensional position of the vertex i.
∑

(ij) in S1 is the
sum over the bond (ij) connecting the vertices i and j on the chains and on the junctions,
and

∑
(ij) in S2 is the sum over bonds i and j , which contain not only bonds in the chains

but also bonds that connect the center and the corners of the junctions.
∑

〈ij 〉 in SJ is the
sum over triangles i and j , which share the center of the junction as the common vertex.
The symbol θ(ij) in S2 is the angle between the bonds i and j , and ni in SJ is the unit normal
vector of the triangle i at the junctions as shown in Fig. 2a.

The coefficient b is the one-dimensional bending rigidity (= coefficient of one-
dimensional bending energy), which will be varied in order to see the phase structure, and
bJ is the two-dimensional bending rigidity at the junctions. In this paper, bJ is fixed to

bJ = 5 (3)

so that the junctions are sufficiently smooth. The value bJ = 5 is relatively larger than the
first-order transition point bc � 0.77 in the fixed-connectivity surface model [27, 28]. There-
fore, the hexagonal or pentagonal junctions are almost flat even when the meshwork is in
the crumpled phase at sufficiently small b.

Model 2 is defined on the meshwork with rigid junctions, such as the one shown in
Fig. 1b. The Hamiltonian is given by the linear combination of the Gaussian bond potential
S1 and the one-dimensional bending energy S2 such that

S(X) = S1 + bS2, S1 =
∑

(ij)

(Xi − Xj)
2,

S2 =
∑

(ij)

[1 − cos θ(ij)] (model 2), (4)

where
∑

(ij) in S1 is the sum over the bond (ij) connecting the vertices i and j , and
∑

(ij)

in S2 is the sum over bonds i and j , which contain not only bonds in the chains but also
virtual bonds that connect the center and the corners of the rigid junctions; S2 is defined on
the vertices including the corners of the rigid junctions.

The size of the rigid junctions can be characterized by the edge length R, which is fixed
to

R = 0.1 (edge length of the rigid junctions) (5)

in the simulations. The edge length R = 0.1 is smaller than the mean bond length (� 0.707);
the bond length 0.707 corresponds to that in the equilibrium configuration of surfaces with-
out the rigid junctions, where the relation S1/N = 1.5 is satisfied. The rigid junctions in
Fig. 1b were drawn to have a size R that is comparable to the mean bond length; the size
R in Fig. 1b was drawn many times larger than R = 0.1. As we will see later, the relation
S1/N = 1.5 is almost satisfied in model 2.
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The partition function Z of model 1 and model 2 is defined by

Z =
∫ ′ N∏

i=1

dXi exp[−S(X)], (6)

where S(X) is the Hamiltonian, which is given in (2) or in (4).
∫ ′ denotes that the center of

the meshwork is fixed in the integration. In model 1, the dynamical variables are integrated
over 3N -dimensional multiple integrations

∫ ′ ∏N

i=1 dXi , while in model 2 they are inte-
grated over 3NS -dimensional integrations

∫ ′ ∏NS

i=1 dXi for the vertices and 6NJ -dimensional
integrations

∫ ′ ∏NJ

i=1 dXi for the rigid junctions;

∫ ′ N∏

i=1

dXi =
(∫ ′ NS∏

i=1

dXi

)(∫ ′ NJ∏

i=1

dXi

)
(model 2), (7)

where N = NS + NJ .
We must emphasize that the definitions of the models in this paper are quite different from

those of the conventional surface models including the compartmentalized surface models
such as the one in [31]: the conventional surface models are defined on the triangulated sur-
faces, which always include triangles (or plaquettes) even if the surface shape is maintained
only by the skeletons. On the contrary, the meshwork in this paper has no plaquettes except
at the junctions in model 2 and is composed of the linear chains and the junctions only.

3 Monte Carlo Technique

In model 1, the integration of the dynamical variable X is simulated by the random 3D

shift from X to X′ = X + δX, where δX is randomly chosen in a small sphere. The new
position X′ is accepted with the probability Min[1, exp(δS)], where δS = S(new) − S(old).
The radius of the small sphere δX is fixed to certain constant value at the beginning of the
simulations so that the acceptance rate is equal to about 50%.

The vertices on the junctions share an energy which is different from that shared by the
vertices on the chains in model 1. For this reason, we adopt an additional random shift for the
vertices on the junctions. The first step is a simultaneous 3D random translation of vertices
on a junction, and the second step is a simultaneous 3D random rotation of those vertices.
Both of the shifts are done under about 50% acceptance rate. Note that these additional shifts
of X are not always necessary to simulate the integrations in model 1.

The integration of X in model 2 is performed by a random 3D shift of the vertices on the
chains and random 3D shifts of the rigid junctions, which respectively corresponds to the
integrations in (7). The 3D shifts of the rigid junctions are done by a random 3D translation
and a random 3D rotation of the rigid plates. All of the shifts of X are done respectively
under about 50% acceptance rate.

A random number sequence called Mersenne Twister [34] is used in the simulations.

4 Results of Simulation

First we show that both meshwork models have a two-dimensional surface structure
at least in the smooth phase. Figures 3a, b are snapshots of model 1 surface of size
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Fig. 3 Snapshots of model 1 of size (N,NS,NJ ,L) = (36002,20250,2252,4) obtained at (a)
b = 2.92 (collapsed phase), (b) b = 2.93 (smooth phase), and snapshots of model 2 of size
(N,NS,NJ ,L) = (22502,20250,2252,4) obtained at (c) b = 2.59 (collapsed phase), (b) b = 2.61 (smooth
phase). The mean square size X2, which is defined by (8), is (a) X2 � 549, (b) X2 � 1563, (c) X2 � 290,
and (d) X2 � 832. (e), (f), (g), and (h) are the meshwork sections

(N,NS,NJ ,L) = (36002,20250,2252,4) obtained at b = 2.92 (collapsed phase) and
b = 2.93 (smooth phase), and Figs. 3c, d are those of model 2 surface of size (N,NS,NJ ,L)

= (22502,20250,2252,4) obtained at b = 2.59 (collapsed phase) and b = 2.61 (smooth
phase). The corresponding meshwork sections are shown in Figs. 3e–h. The snapshots of
model 1 were drawn in the same scale, which is slightly different from the scale for model 2.
We see that the smooth state of model 1 in Fig. 3f contains the empty space inside the mesh-
work just like the conventional surface model [27]. However, the empty space is almost
invisible in the crumpled state in Fig. 3e. On the contrary, both of the smooth state and the
collapsed state of model 2 in Figs. 3g, h have empty spaces inside the meshworks.

The relation S1/N = 3(N − 1)/2N � 1.5 is expected to be satisfied in model 1 because
of the scale invariant property of the partition function [35]. On the other hand, the expected
relation can slightly be violated in model 2. This is because of the finite size of the rigid
junctions, although the scale invariant property is still valid in model 2. Figures 4a, b show
S1/N versus b of model 1 and model 2. We can see from the figures that the expectations
are fulfilled.

Therefore, we understand from the results shown in Fig. 4a that the MC simulations for
model 1 were successfully performed. We consider that the MC simulations for model 2 are
as well, because the simulation technique for model 2 is almost identical to that for model 1.
We find also from the results in Figs. 4a, b that the phase transition is not reflected in S1/N

in contrast to the fluid surface model in [32], where S1/N discontinuously changes at the
transition point.

The mean square size X2 is defined by
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Fig. 4 The Gaussian bond
potential S1/N versus b of
(a) model 1 and (b) model 2.
S1/N satisfies the predicted
relation S1/N � 1.5 in model 1,
and it is slightly deviated from
1.5 in model 2. The solid lines
connecting the data were drawn
by the multihistogram
reweighting technique [36]

Fig. 5 The mean square size of
X2 versus b of (a) model 1 and
(b) model 2. The curves were
drawn by the multihistogram
reweighting technique

X2 = 1

N

∑

i

(Xi − X̄)2, X̄ = 1

N

∑

i

Xi, (8)

where X̄ is the center of the meshwork. X2 represents the distribution of vertices in R3.
Therefore, the meshwork is expected to be characterized by large X2 (small X2) at b → ∞
(b → 0), where the meshwork is in a smooth (collapsed) state.

Figures 5a, b show X2 versus b of model 1 and model 2. The solid curves drawn on
the data were obtained by the multihistogram reweighting technique [36]. We find from
Fig. 5a that X2 changes almost discontinuously at an intermediate b. Although the mul-
tihistogram curves at the transition point appear to be smooth, the discontinuous change
of X2 is apparent in the N = 19362 and N = 36002 surfaces. This indicates the existence
of a discontinuous phase transition of surface-collapsing phenomenon between the smooth
spherical phase and the collapsed phase. On the contrary, X2 of model 2 in Fig. 5b appears
to vary continuously against b, and therefore, we can not confirm the discontinuous nature
of the transition in model 2 only from X2 in Fig. 5b.

In order to see the order of the collapsing transition in both models, we compute the
variance CX2 of X2 by

CX2 = 1

N
〈(X2 − 〈X2〉)2〉, (9)

which can reflect how large the skeleton size fluctuates. If the models undergo a collapsing
transition, we can see an anomalous peak in CX2 at the transition point. We plot CX2 versus
b in Figs. 6a, b, which were obtained in model 1 and model 2, respectively.
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Fig. 6 The variance C
X2 of X2 versus b of (a) model 1 and (b) model 2, and (c) log-log plots of the peak

values Cmax
X2 against N

The solid curves in Figs. 6a, b were drawn by using the multihistogram reweighting
technique as well as the corresponding X2 curves in Figs. 5a, b. We find in the curve of CX2

the expected anomalous peak, which apparently increases with increasing N . This indicates
the existence of the collapsing transition in both models.

The order of the collapsing transition can be confirmed from the scaling of the peak
values Cmax

X2 such that

Cmax
X2 ∝ (N)σ1 , (10)

where σ1 is a critical exponent. We show in Fig. 6c the log-log plots of Cmax
X2 against N ,

which were obtained from the curves in Figs. 6a, b. The straight lines in Fig. 6c were drawn
by fitting the data to (10). Thus, we have

σ1 = 1.75 ± 0.05 (model 1), σ1 = 1.55 ± 0.09 ( model 2). (11)

The finite-size scaling (FSS) theory indicates that the peak values Cmax
X2 should scale accord-

ing to Nσ (σ = 1) if the transition is of first order [37–39]. The exponents σ1 in both models
are larger than 1, however, the observed scaling behavior in Fig. 6c clearly reflects the anom-
alous behavior in CX2 . Therefore, the FSS analysis confirms that the model 2 undergoes a
discontinuous collapsing transition, which was not always confirmed from the variation of
X2 against b in Fig. 5b. Moreover, the FSS analysis of model 1 is considered to be consistent
to the first-order collapsing transition indicated by the discontinuity of X2 in Fig. 5a.

The discontinuous collapsing transition in both models can also be seen in the variations
of X2. Figures 7a–i show the variation of X2 against MCS obtained at b which are close
to the transition point of model 1. The surfaces are of size N = 10242, N = 19362, and
N = 36002. We find that X2 in Fig. 7a remains in a lower value compared to that in Fig. 7c.
The large fluctuation of X2 in Fig. 7b is consistent to the discontinuous transition between
the collapsed phase and the smooth phase, which are respectively characterized by X2 in
Figs. 7a, c. Contrary to X2 of the N = 10242 surface, we find no such fluctuation in X2 on
the N = 19362 and N = 36002 surfaces. After the surface is once trapped in the collapsed
phase, it hardly changes to the smooth phase in those large sized surfaces. For this reason, a
single variation of X2 in the collapsed phase and two variations of X2 in the smooth phase
are shown in Figs. 7d–f, g–i. Horizontal dashed lines denote X2

min and X2
max for comput-

ing the mean value of X2 in the collapsed phase and in the smooth phase. The Hausdorff
dimension can be extracted from these mean values of X2 and will be discussed below.
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Fig. 7 The variation of X2 versus MCS of model 1 surface of size N = 10242 at (a) b = 2.9, (b) b = 2.94,
and (c) b = 2.98, and those of size N = 19362 at (d) b = 2.92, (e) b = 2.93, and (f) b = 2.94, and those of
size N = 36002 at (g) b = 2.92, (h) b = 2.93, and (i) b = 2.94. Horizontal dashed lines denote X2

min and

X2
max for computing the mean value of X2 in the collapsed phase and in the smooth phase, and X2

min and

X2
max are shown in Table 1. The symbols smo and col in (b) denote the smooth phase and the collapsed phase,

respectively

The variations of X2 of model 2 are shown in Figs. 8a–i obtained at b which are close to
the transition point of surfaces of size N = 6402, N = 12102, and N = 22502. We find from
the figures that the surfaces have two distinct states, which are respectively characterized by
a large X2 and a small X2 just the same as those in Figs. 7a–i of model 1. However, jumps
of X2 can be seen in the variation in Figs. 8e, h even on such large surfaces. This indicates
that the collapsing transition of model 2 is relatively weak compared to that of model 1.
Horizontal dashed lines denote X2

min and X2
max for computing the mean value of X2 in the

collapsed phase and in the smooth phase, just as in Figs. 7a–i.
The Hausdorff dimension H , which was already introduced in the final part of the Intro-

duction, is obtained from the scaling relation

X2 ∝ N2/H (12)

by using the mean values X2 obtained in the collapsed phase and in the smooth phase.
As indicated by the horizontal dashed lines in Figs. 7a–i and Figs. 8a–i, a lower bound

X2 col
min and an upper bound X2 col

max in the collapsed phase and those X2 smo
min and X2 smo

max in the
smooth phase can be assumed for computing the mean values of X2. Table 1 shows the
assumed values for X2

min and X2
max. Then, the mean values can be obtained from X2 in the

ranges X2 col
min < X2 < X2 col

max and X2 smo
min < X2 < X2 smo

max . The symbols b (col) and b (smo)
in Table 1 denote that the bending rigidity where the sequence of X2 was obtained for
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Fig. 8 The variation of X2 versus MCS of model 2 surface of size N = 6402 at (a) b = 2.58, (b) b = 2.6,
and (c) b = 2.62, and those of size N = 12102 at (d) b = 2.58, (e) b = 2.6, and (f) b = 2.62, and those of size
N = 22502 at (g) b = 2.59, (h) b = 2.6, and (i) b = 2.61. Horizontal dashed lines denote X2

min and X2
max for

computing the mean value of X2 in the collapsed phase and in the smooth phase

Table 1 The lower bound X2 col
min and the upper bound X2 col

max for computing the mean value X2 (col) in the

collapsed phase, and those X2 smo
min and X2 smo

max in the smooth phase. b (col) and b (smo) denote the bending

rigidities where X2 were obtained

Model N (�,m) b (col) X2 col
min X2 col

max b (smo) X2 smo
min X2 smo

max

1 5762 (36,6) 2.9 80 210 2.98 230 360

1 10242 (48,8) 2.94 110 300 2.98 400 600

1 19362 (66,11) 2.92 200 550 2.93 650 1050

1 36002 (90,15) 2.92 400 730 2.93 1250 1800

2 3602 (36,6) 2.6 52 123 2.64 140 205

2 6402 (48,8) 2.58 60 175 2.62 210 330

2 12102 (66,11) 2.58 100 300 2.62 400 600

2 22502 (90,15) 2.59 190 500 2.61 680 1000

computing the mean value of X2. The integers (�,m) are those introduced in Sect. 2 and
characterize the size of the meshwork.

Figures 9a, b show the log-log plots of the mean values X2 (smo) and X2 (col) against
N of model 1 and model 2, respectively. The error bars are the standard deviations.
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Fig. 9 Log-log plots of X2 (col)
and X2 (smo) against N of
(a) model 1 and (b) model 2. The
straght lines were drawn by
fitting the data to (12). The fitting
in the collapsed phase in (b) was
done by using the three largest
data

The straight lines on the figures were obtained by fitting the data to (12). The fittings were
done by using four data in the figures except the case of the collapsed phase of model 2 in
Fig. 9b. Thus, we have

H col = 2.68 ± 0.45, H smo = 2.15 ± 0.15 (model 1),

H col = 2.31 ± 0.75, H smo = 2.20 ± 0.15 (model 2). (13)

We find from the results in (13) that H smo in the smooth phase of both models are almost
identical to the topological dimension H = 2, and that H col of model 1 in the collapsed
phase is different from H smo in the smooth phase, while H col and H smo of model 2 are
almost identical. H col = 2.31(75) of model 2 implies that the meshwork is relatively smooth
even in the collapsed phase, although the meshwork size discontinuously changes at the
transition point. This is very similar to the case of the surface model with many holes in [40].
To the contrary, H col = 2.68(45) of model 1 implies that the meshwork is considerably
collapsed in the collapsed phase. However, both H col remain in the physical bound, i.e.,
H col < 3. We should note that the results H col of both models are in sharp contrast to that of
the compartmentalized model in [31], because the compartmentalized surface is completely
collapsed in the collapsed phase.

We are interested also in the surface fluctuation phenomena; it is interesting to see
whether or not the collapsing transition is accompanied by the surface fluctuation transi-
tion. The surface fluctuation phenomena can be characterized by the bending energy S2

in (2) and (4), because S2 is expected to be large (small) in the fluctuated (smooth) state in
the meshwork model, just as the standard two-dimensional bending energy in the surface
model.

To see the surface fluctuations, we plot the bending energies S2/N and S2/N
′ in

Figs. 10a, b, respectively. N and N ′ are the total number of vertices where the bend-
ing energy is defined in model 1 and model 2, respectively. N ′ in model 2 is given by
N ′ = NS + 6NJ − 12 = 30m(� − m). Thus, we find that the variation of S2/N is discon-
tinuous against b in model 1; the jump can be seen in S2/N on the surfaces of N = 19362
and N = 36002, although the gap is relatively small compared to the value of S2/N itself.
From the discontinuous change in S2/N , we consider that the surface fluctuation transition
is of first order in model 1. On the contrary, S2/N

′ of model 2 in Fig. 10b appears to vary
continuously against b.
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Fig. 10 (a) The bending energy
S2/N versus b of model 1 and
(b) the bending energy S2/N ′
versus b of model 2. S2 is
defined by (2) and (4). N and N ′
are the total number of vertices
where S2 is defined on the
surfaces of model 1 and model 2,
respectively

Fig. 11 The specific heat CS2 for S2 versus b of (a) model 1 and (b) model 2, and (c) log-log plots of the peak
values Cmax

S2
versus N(N ′) of model 1 (model 2). The error bars on the symbol denote the statistical errors,

which were obtained by the binning analysis. Solid curves in (a) and (b) were drawn by the multihistogram
reweighting technique. The straight lines in (c) were drawn by fitting the largest three data (model 2) and the
largest four data (model 1) to the expressions of (15)

The specific heat for S2 of model 1 is defined by

CS2 = b2

N
〈(S2 − 〈S2〉)2〉, (14)

which is the variance of S2. CS2 of model 2 can be obtained by replacing N by N ′ in (14).
Just as CX2 that reflects the collapsing transition, CS2 can also reflect the surface fluctuation
transition through its anomalous behavior. Figures 11a, b show CS2 versus b of model 1 and
model 2, respectively. The curves on the figures were obtained also by the multihistogram
reweighting technique. We find an anomalous peak in CS2 of both models in Figs. 11a, b.
The peak values increase with increasing N (N ′) and, therefore this indicates the existence
of phase transition in both models.

In order to see the order of the surface fluctuation transition, we show in Fig. 11c the
log-log plots of the peak values Cmax

S2
against N(N ′); N for model 1 and N ′ for model 2.

Cmax
S2

were obtained from Figs. 11a, b. The straight lines were drawn by fitting the data to

Cmax
S2

∝ (N)σ2 (model 1), Cmax
S2

∝ (N ′)σ2 (model 2), (15)
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Fig. 12 The Binder quantity
B

X2 versus b of (a) model 1 and
(b) model 2, and BS2 versus b of
(c) model 1 and (d) model 2

where σ2 is a critical exponent. The fittings were done by using the largest four data in model
1 and the largest three data in model 2 in Fig. 11c. Thus, we have

σ2 = 0.85 ± 0.14 (model 1), σ2 = 0.51 ± 0.03 (model 2). (16)

The exponent σ2 of model 1 can be seen as σ2 � 0.99 within the error and, hence it is almost
equal to 1. Therefore, the scaling property of Cmax

S2
seems consistent to the discontinuous

transition indicated by the discontinuity of S2/N in Fig. 10a. On the contrary, the exponent
σ2 of model 2 is obviously smaller than 1 and, therefore, this indicates that the surface
fluctuation transition is considered to be of second order in model 2.

The order of the transitions can also be characterized by the Binder quantities BX2 and
BS2 [41], which are defined by

BX2 = 1 − 〈(X2 − 〈X2〉)4〉
3〈(X2 − 〈X2〉)2〉2

, BS2 = 1 − 〈(S2 − 〈S2〉)4〉
3〈(S2 − 〈S2〉)2〉2

. (17)

If the transition is of first order, then we should have B = 2/3. In Figs. 12a–d we plot BX2

and BS2 of both models. The solid lines in the figures were drawn by the multihistogram
reweighting technique.

We find in Figs. 12a, b that both BX2 and BS2 have a peak Bmax at the transition point and
that Bmax

X2 is close to 2/3 at the transition point of model 1, and also in Fig. 12b that Bmax
X2 is

close to 2/3 at the transition point of model 2. These results on the order of the collapsing
transition in both models are consistent with the predictions by the discontinuity of X2 in
Fig. 5a and by the finite size scaling analysis of Cmax

X2 in Fig. 6c. It is also seen that Bmax
S2

of
model 1 in Fig. 12c is relatively close to 2/3 and that BS2 of model 2 in Fig. 12d is relatively
smaller than 2/3, and therefore these results are also consistent with the results predicted by
the observations in the FSS analyses of CS2 .

5 Summary and Conclusion

We have studied numerically two types of surface models defined on meshworks, which
are constructed as a sublattice in a triangulated surface and are composed of linear chains
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and junctions. It was found that both models undergo a discontinuous collapsing transition
between the smooth phase and the collapsed phase. The collapsed phases in both models
are physical in the sense that H < 3, where H is the Hausdorff dimension. With respect to
surface fluctuations, the first model undergoes a discontinuous transition, while the second
model a continuous transition.

More precisely, two types of meshwork models of spherical topology were investigated
by MC simulations for clarifying the phase structure, which is the order of the collaps-
ing transition and the order of the surface fluctuation transition. Both models are defined on
meshworks, which are composed of linear chains and junctions; no two-dimensional surface
is included in the meshwork except at the junctions. The first model, denoted by model 1,
is characterized by elastic junctions, which are composed of vertices, bonds and triangles,
and the shape of the elastic junctions is of hexagonal and of pentagonal. The Hamiltonian
of model 1 contains the Gaussian bond potential, the one-dimensional bending energy, and
the two-dimensional bending energy at the elastic junctions. The second model, denoted
by model 2, is characterized by rigid junctions, which are hexagonal rigid plates and pen-
tagonal ones. The Hamiltonian of model 2 contains the Gaussian bond potential and the
one-dimensional bending energy.

The bending rigidity bJ at the elastic junctions was fixed to bJ = 5 in model 1, and the
edge length R of the rigid junctions was assumed to be R = 0.1 in model 2. The compart-
ment size was assumed to be L = 4, which is the total number of bonds in a chain between
the junctions. Thus, the compartment size can be negligible compared to the surface size if
N is sufficiently large. We used the lattices of size up to N = 36002 in model 1 and those
up to N = 22502 in model 2.

We found that model 1 undergoes a first-order collapsing transition and a first-order sur-
face fluctuation transition, and that model 2 undergoes a first-order collapsing transition and
a second-order surface fluctuation transition. The smooth phase in both models is character-
ized by Hausdorff dimension H � 2, while the collapsed phases are slightly different from
each other between the two models. The Hausdorff dimension H col in the collapsed phase
at the transition point of model 1 is relatively larger than the topological dimension of the
surface, but it remains in the physical bound, i.e., H < 3. To the contrary, H col in the col-
lapsed phase of model 2 is almost identical to H smo in the smooth phase. This implies that
the collapsed meshwork of model 2 has a two-dimensional surface structure just as in the
smooth phase although the meshwork size discontinuously changes at the transition point.

Our results in this paper also indicate that the phase structure of the meshwork model is
dependent on the elasticity at the junctions. In fact, the surface fluctuation transition is of
first-order in model 1 while that is of second-order in model 2.

Finally we comment on the relation between the models in this paper and the conven-
tional fixed connectivity surface model [27]. We consider that the meshwork models in this
paper are almost identical to the conventional surface models because of the following three
reasons: firstly, both the conventional surface model and the meshwork models have a dis-
continuous collapsing transition. Secondly, both the conventional model and model 1 in this
paper undergo a discontinuous transition of surface fluctuations. Thirdly, the collapsed phase
of the meshwork models in this paper are physical, i.e., H < 3, just as in the conventional
model in [27], although no self-avoiding property is assumed in those models.
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